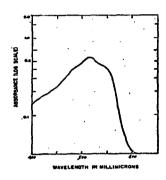
THE ACID CATALYZED CYCLIZATION OF 1,4-DIAMINO-2-β-HYDROXYETHYLAMINOANTHRAQUINONES: A SYNTHESIS OF THE ANTHRA[1,2-b]-1,4-OXAZINE-DIONE SYSTEM

M.S.Simon and J.F.Downey, Jr.
Polaroid Corporation, Cambridge, Massachusetts 02139

(Received in USA 8 July 1974; received in UK for publication 15 August 1974)


In a recent communication (i) we described the formation of 1,4-diamino-2-(N-alkyl- β -hydroxyethylamino)anthraquinones by a Smiles rearrangement of 1,4-diamino-2-(β -alkylamino-ethoxy)anthraquinones. We now report a remarkably facile transformation of these 1,2,4-tri-aminoanthraquinones which leads to what we believe is the first preparation of the 4-H-anthra-[1,2-b]-1,4-oxazine ring system. We interpret the reaction as proceeding by this sequence:

When an acetone solution of 1,4-diamino-2-(N-methyl-β-hydroxyethylamino)anthraquinone is stirred with 10% aqueous hydrochloric acid at 50° the red-violet solution clouds and an

orange hydrochloride salt precipitates. Neutralization and crystallization from methanol affords stout brown crystals analyzing for $C_{17}H_{14}N_2O_3$. The structure is reasoned from these considerations: 1. The loss of a molecule of ammonia is indicated by the empirical formula.

2. The visible spectrum (Figure) no longer shows the double peak characteristic of the 1,4-diaminoanthraquinone system.

3. The infra-red spectrum (KBr disk) shows a carbonyl band at 1670 cm⁻¹ in the hydrochloride salt, shifting to 1640 cm⁻¹ in the free base. This is additional evidence that the 1,4-diaminoanthraquinone system, in which both carbonyl frequencies are below 1625cm^{-1} (2), is no longer present. Disappearance of the 1,4-diamino system with concurrent loss of ammonia can be fully rationalized by the proposed cyclization to yield the oxazine ring. The NMR spectrum is in agreement with this structure.

6 (TMS)	Multiplicity	Protons	s <u>Assignment</u>	
2.94	singlet	3	N-C <u>H</u> 3	
3.46	triplet(J=5.	.0) 2	3-C <u>H</u> 2	
4.22	triplet(J=5.	0) 2	2-0 <u>H</u> 2	
6.22	singlet	1	5-c <u>ห</u> ื	
7.6-7.	9 multiplet	{~2 ~4 (2	9,10 =CH-	CH=
7.9-8.	25multiplet 6	√{~4 (2	exch.) 8,11 C 6-NH ₂	∰¹s

Other 1,4,-diamino-2-(N-alkyl- β -hydroxyethylamino)anthraquinones react in analogous fashion to give the expected products. Data are summarized in the following table.

6-Amino-2-R, -4-R, -2, 3, 7, 12-tetrahydroanthra[1, 2-b]-1, 4-oxazine-7, 12-diones

R ₁	R ₂	M.P.(°)	λ _{max} (mμ)	E	Solvent
				_	
Н	CH ²	296-6.5	514	11,200	isopropanol
	,		sho.550	8,200	
Н	носнасна	258-9	517	10,600	fsopropanol
			sho.555	8,000	
CH3	HOCH(CH ₃)CH ₂	200-1	520 sho.550	12,000 9,600	isopropanol

- 1. M.S.Simon and J.F.Downey, Jr., Tetrahedron Letters, (1974)
- 2. B.E.Zaitsev, L.B.Preobrazhenskaya, B.N.Kolokolov, V.M.Allenov; Russian Journal of Physical Chemistry, 44, 1210 (1970) and references cited therein.